

Table I. Reactions of Metalated Allyl Silyl Ethers with Chlorosilanes

Run	Allyl silyl ether	Chlorosilane	Product ^a (% yield)	Bp, °C (mmHg)	n^{20}_{D}
1	$\text{CH}_2=\text{CHCH}_2\text{OSiMe}_3$	Me_3SiCl	5a (80)	62 (35)	1.4228
2	$\text{CH}_2=\text{CHCH}_2\text{OSiMe}_3$	Et_3SiCl	5b (72)	97 (15)	1.4440
3	$\text{CH}_2=\text{CHCH}_2\text{OSiMe}_3$	$t\text{-BuMe}_2\text{SiCl}$	5c (76)	91 (17)	1.4389
4	$\text{CH}_2=\text{CHCH}_2\text{OSiEt}_3$	Me_3SiCl	5d (60)	85 (9)	1.4431
5	$\text{CH}_2=\text{CHCH}_2\text{OSiEt}_3$	Et_3SiCl	5e (71)	111 (4)	1.4580

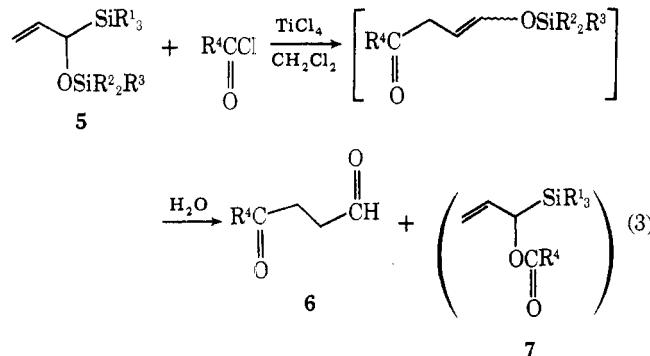

^a Products have been isolated and fully characterized.

Table II. Reactions of α -Siloxyallylsilanes with Acid Chlorides in the Presence of Titanium Tetrachloride^a

Run	α -Siloxyallylsilane	Acid chloride	Product	% yield ^b
1	5a	$(\text{CH}_3)_2\text{CHCOCl}$	$(\text{CH}_3)_2\text{CHCOCH}_2\text{CH}_2\text{CHO}$	20 ^{c,d}
2	5b	$(\text{CH}_3)_2\text{CHCOCl}$	$(\text{CH}_3)_2\text{CHCOCH}_2\text{CH}_2\text{CHO}$	43 ^{e,e}
3	5c	$(\text{CH}_3)_2\text{CHCOCl}$	$(\text{CH}_3)_2\text{CHCOCH}_2\text{CH}_2\text{CHO}$	70 ^{c,f} (80) ⁱ
4	5c	$\text{CH}_3(\text{CH}_2)_3\text{COCl}$	$\text{CH}_3(\text{CH}_2)_3\text{COCH}_2\text{CH}_2\text{CHO}$	45
5	5c	$(\text{CH}_3)_2\text{CHCH}_2\text{COCl}$	$(\text{CH}_3)_2\text{CHCH}_2\text{COCH}_2\text{CH}_2\text{CHO}$	53 (63) ⁱ
6	5c	$\text{CH}_3\text{CH}_2\text{CH}(\text{CH}_3)\text{COCl}$	$\text{CH}_3\text{CH}_2\text{CH}(\text{CH}_3)\text{COCH}_2\text{CH}_2\text{CHO}$	67
7	5b	$(\text{CH}_3)_3\text{CCOCl}$	$(\text{CH}_3)_3\text{COCH}_2\text{CH}_2\text{CHO}$	79
8	5c	$(\text{CH}_3)_3\text{CCOCl}$	$(\text{CH}_3)_3\text{COCH}_2\text{CH}_2\text{CHO}$	75 ^c
9 ^g	5c	$(\text{CH}_3)_3\text{CCOCl}$	$(\text{CH}_3)_3\text{COCH}_2\text{CH}_2\text{CHO}$	43
10 ^h	5c	$\text{CH}_3(\text{CH}_2)_5\text{COCl}$	$\text{CH}_3(\text{CH}_2)_5\text{COCH}_2\text{CH}_2\text{CHO}^{j,j}$	68
11 ^h	5c	$\text{c-C}_6\text{H}_{11}\text{COCl}$	$\text{c-C}_6\text{H}_{11}\text{COCH}_2\text{CH}_2\text{CHO}$	65
12 ^h	5c	$(\text{CH}_3)_2\text{C}=\text{CHCOCl}$	$(\text{CH}_3)_2\text{C}=\text{CHCOCH}_2\text{CH}_2\text{CHO}$	58

^a All reactions were carried out at -78°C for 3 h unless otherwise noted. ^b Yields after isolation by TLC unless otherwise noted.

^c Determined by NMR relative to an internal standard. ^d The ester (7) was obtained in 30% yield. ^e The ester was obtained in 17% yield. ^f No ester was observed at all. ^g Aluminium chloride was used as a Lewis acid. ^h The reaction was carried out at -78°C for 4 h. ⁱ Yields after isolation as a 2,4-dinitrophenylhydrazone. ^j This compound is known as an intermediate for the synthesis of dihydrojasmine; K. Oshima, H. Yamamoto, and H. Nozaki, *J. Am. Chem. Soc.*, **95**, 4446 (1973).

In some cases, O-acylation of the alkoxy group of 5 affording esters (7) can compete with the regiospecific carbon–carbon bond formation at γ carbon of the allylsilane under these reaction conditions. Cleavage of alkoxy silanes with acid chlorides is one of the well-documented reactions in the organosilicon chemistry.⁹ However the formation of esters can be efficiently excluded by means of increasing the steric bulkiness of the siloxy groups in 5. Thus γ -keto aldehydes were obtained effectively by the introduction of *tert*-butyldimethylsiloxy group in place of trimethylsiloxy group into the α position of the allylsilane.

This work demonstrates that α -siloxyallylsilanes (5) can be viewed as one of the “homoenolate anion equivalents”.¹⁰ The synthetic utility of the present reaction was mostly displayed by complete regiospecificity of the acylation, ready accessibility of starting materials, and simple manipulation of the conversion.

As a general procedure, to a solution of 1 mmol of an acid chloride in 2 mL of dry dichloromethane at -78°C , titanium tetrachloride (1.1 mmol) was added dropwise with stirring under a nitrogen atmosphere. When addition was completed, 1 mmol of an α -siloxyallylsilane (5) in 2 mL of dichloromethane was added slowly and the mixture was stirred continuously for an additional 3 h. The solution was allowed to warm up to 0°C slowly and a mixture of water and ether was

then added. The organic layer was washed with aqueous sodium bicarbonate and water and dried over anhydrous sodium sulfate. Evaporation of the solvent yields crude product which is purified by preparative thin-layer chromatography.

Related works are in progress.

Acknowledgment. We thank Toshiba Silicone Co., Ltd., for a gift of chlorosilanes.

References and Notes

- Chemistry of Organosilicon Compounds. 106.
- Presented partly at the VIIIth International Conference on Organometallic Chemistry, Kyoto, Sept. 12–16, 1977, Abstracts 1C25, p 220.
- A. Hosomi and H. Sakurai, *J. Am. Chem. Soc.*, **99**, 1673 (1977), and references cited therein.
- (a) J. C. Stowell, *J. Org. Chem.*, **41**, 560 (1976), and references cited therein; (b) P. Bakuzis and M. L. F. Bakuzis, *Ibid.*, **42**, 2362 (1977); (c) A. Murali, M. Ono, and T. Masamune, *J. Chem. Soc., Chem. Commun.*, 573 (1977).
- D. A. Evans, G. C. Andrews, and B. Buckwalter, *J. Am. Chem. Soc.*, **96**, 5560 (1974).
- W. C. Still and T. L. Macdonald, *J. Am. Chem. Soc.*, **96**, 5561 (1974); (b) *J. Org. Chem.*, **41**, 3620 (1976).
- While our work was in progress, Still has reported briefly that the allyloxy carbanions (4) were silylated at oxygen with chlorosilanes to give 5; W. C. Still, *J. Org. Chem.*, **41**, 3063 (1976).
- Satisfactory NMR, IR, and mass spectra and elemental analysis were obtained for all products.
- A. Ladenburg, *Ber.*, **4**, 726 (1871).
- For other examples of homoenolate anion equivalents, see (a) E. J. Corey and D. E. Cane, *J. Org. Chem.*, **35**, 3405 (1970); (b) G. Büchi and H. Wüest, *Ibid.*, **34**, 1122 (1969); (c) H. W. Thompson and B. S. Huegil, *J. Chem. Soc., Chem. Commun.*, 638 (1973); (d) E. J. Corey, B. W. Erikson, and R. Noyori, *J. Am. Chem. Soc.*, **93**, 1724 (1971); (e) K. Oshima, H. Yamamoto, and H. Nozaki, *Ibid.*, **95**, 7926 (1973); (f) W. Oppolzer and R. L. Snowden, *Tetrahedron Lett.*, 4187 (1976); (g) Y. Leroux and C. Roman, *Ibid.*, 2585 (1973); (h) H. Ahlbrecht and G. Rauchschwalbe, *Synthesis*, 417 (1973); (i) G. Sturtz, B. Corbel, and H. Normant, *C.R. Hebd. Séances Acad. Sci., Ser. C*, **277**, 395 (1973); *Chem. Abstr.*, **80**, 15012f (1974); (j) A. A. Ponaras, P. Bakuzis, M. L. F. Bakuzis, C. C. Fortes, and R. Santos, *J. Org. Chem.*, **41**, 2769 (1976).

Akira Hosomi, Hidehiko Hashimoto, Hideki Sakurai*

Department of Chemistry, Faculty of Science
Tohoku University, Sendai 980, Japan

Received November 4, 1977